Copied to
clipboard

G = C42:3Q8order 128 = 27

3rd semidirect product of C42 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42:3Q8, M4(2):2Q8, C4:C4.103D4, C4.25(C4:Q8), (C22xC4).86D4, C42:6C4.3C2, C23.594(C2xD4), C22.14(C4:Q8), C4.10(C22:Q8), C42:8C4.14C2, C22.231C22wrC2, C2.29(D4.9D4), C2.31(D4.8D4), M4(2):C4.6C2, C22.C42.4C2, (C2xC42).375C22, (C22xC4).734C23, C22.36(C22:Q8), C42:C2.65C22, (C2xM4(2)).26C22, C23.41C23.6C2, C2.8(C23.78C23), (C2xC4).19(C2xQ8), (C2xC4).1052(C2xD4), (C2xC4).349(C4oD4), (C2xC4:C4).138C22, SmallGroup(128,793)

Series: Derived Chief Lower central Upper central Jennings

C1C22xC4 — C42:3Q8
C1C2C22C2xC4C22xC4C2xC4:C4C42:8C4 — C42:3Q8
C1C2C22xC4 — C42:3Q8
C1C22C22xC4 — C42:3Q8
C1C2C2C22xC4 — C42:3Q8

Generators and relations for C42:3Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, dad-1=ab=ba, cac-1=a-1b2, cbc-1=dbd-1=b-1, dcd-1=c-1 >

Subgroups: 232 in 115 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2xC4, C2xC4, C2xC4, Q8, C23, C42, C42, C22:C4, C4:C4, C4:C4, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C22xC4, C2xQ8, C2.C42, C4.Q8, C2.D8, C2xC42, C2xC4:C4, C42:C2, C22:Q8, C42.C2, C4:Q8, C2xM4(2), C42:6C4, C22.C42, C42:8C4, M4(2):C4, C23.41C23, C42:3Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2xD4, C2xQ8, C4oD4, C22wrC2, C22:Q8, C4:Q8, C23.78C23, D4.8D4, D4.9D4, C42:3Q8

Character table of C42:3Q8

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P8A8B8C8D
 size 11112222224444888888888888
ρ111111111111111111111111111    trivial
ρ21111111111-1-1-1-1-1-11-1-1-1-111111    linear of order 2
ρ31111111111-1-1-1-111-1-1-111-1-1-111    linear of order 2
ρ411111111111111-1-1-111-1-1-1-1-111    linear of order 2
ρ51111111111-1-1-1-11-11111-11-1-1-1-1    linear of order 2
ρ611111111111111-111-1-1-111-1-1-1-1    linear of order 2
ρ7111111111111111-1-1-1-11-1-111-1-1    linear of order 2
ρ81111111111-1-1-1-1-11-111-11-111-1-1    linear of order 2
ρ92222-2-22-2-220000000-220000000    orthogonal lifted from D4
ρ10222222-2-2-2-2000000-2000020000    orthogonal lifted from D4
ρ112222-2-2-222-20000-200002000000    orthogonal lifted from D4
ρ12222222-2-2-2-200000020000-20000    orthogonal lifted from D4
ρ132222-2-22-2-2200000002-20000000    orthogonal lifted from D4
ρ142222-2-2-222-2000020000-2000000    orthogonal lifted from D4
ρ152-2-22-22-22-22000000000000-2200    symplectic lifted from Q8, Schur index 2
ρ162-2-22-22-22-220000000000002-200    symplectic lifted from Q8, Schur index 2
ρ172-2-222-222-2-2-22-22000000000000    symplectic lifted from Q8, Schur index 2
ρ182-2-22-222-22-2000000000000002-2    symplectic lifted from Q8, Schur index 2
ρ192-2-22-222-22-200000000000000-22    symplectic lifted from Q8, Schur index 2
ρ202-2-222-222-2-22-22-2000000000000    symplectic lifted from Q8, Schur index 2
ρ212-2-222-2-2-22200000-2i00002i00000    complex lifted from C4oD4
ρ222-2-222-2-2-222000002i0000-2i00000    complex lifted from C4oD4
ρ234-44-40000002i2i-2i-2i000000000000    complex lifted from D4.9D4
ρ2444-4-40000002i-2i-2i2i000000000000    complex lifted from D4.8D4
ρ254-44-4000000-2i-2i2i2i000000000000    complex lifted from D4.9D4
ρ2644-4-4000000-2i2i2i-2i000000000000    complex lifted from D4.8D4

Smallest permutation representation of C42:3Q8
On 32 points
Generators in S32
(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 8 2 7)(3 5 4 6)(9 15 10 16)(11 14 12 13)(17 20 19 18)(21 22 23 24)(25 28 27 26)(29 30 31 32)
(1 11 5 15)(2 12 6 16)(3 10 7 14)(4 9 8 13)(17 30 27 24)(18 31 28 21)(19 32 25 22)(20 29 26 23)
(1 18 5 28)(2 20 6 26)(3 27 7 17)(4 25 8 19)(9 32 13 22)(10 30 14 24)(11 21 15 31)(12 23 16 29)

G:=sub<Sym(32)| (9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,2,7)(3,5,4,6)(9,15,10,16)(11,14,12,13)(17,20,19,18)(21,22,23,24)(25,28,27,26)(29,30,31,32), (1,11,5,15)(2,12,6,16)(3,10,7,14)(4,9,8,13)(17,30,27,24)(18,31,28,21)(19,32,25,22)(20,29,26,23), (1,18,5,28)(2,20,6,26)(3,27,7,17)(4,25,8,19)(9,32,13,22)(10,30,14,24)(11,21,15,31)(12,23,16,29)>;

G:=Group( (9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,8,2,7)(3,5,4,6)(9,15,10,16)(11,14,12,13)(17,20,19,18)(21,22,23,24)(25,28,27,26)(29,30,31,32), (1,11,5,15)(2,12,6,16)(3,10,7,14)(4,9,8,13)(17,30,27,24)(18,31,28,21)(19,32,25,22)(20,29,26,23), (1,18,5,28)(2,20,6,26)(3,27,7,17)(4,25,8,19)(9,32,13,22)(10,30,14,24)(11,21,15,31)(12,23,16,29) );

G=PermutationGroup([[(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,8,2,7),(3,5,4,6),(9,15,10,16),(11,14,12,13),(17,20,19,18),(21,22,23,24),(25,28,27,26),(29,30,31,32)], [(1,11,5,15),(2,12,6,16),(3,10,7,14),(4,9,8,13),(17,30,27,24),(18,31,28,21),(19,32,25,22),(20,29,26,23)], [(1,18,5,28),(2,20,6,26),(3,27,7,17),(4,25,8,19),(9,32,13,22),(10,30,14,24),(11,21,15,31),(12,23,16,29)]])

Matrix representation of C42:3Q8 in GL6(F17)

0160000
100000
001500
0001600
000040
000004
,
1600000
0160000
004300
0001300
00001314
000004
,
040000
400000
00141600
008300
000031
0000914
,
1300000
040000
000043
0000013
00131400
000400

G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,0,5,16,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0,0,0,0,0,3,13,0,0,0,0,0,0,13,0,0,0,0,0,14,4],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,14,8,0,0,0,0,16,3,0,0,0,0,0,0,3,9,0,0,0,0,1,14],[13,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,13,0,0,0,0,0,14,4,0,0,4,0,0,0,0,0,3,13,0,0] >;

C42:3Q8 in GAP, Magma, Sage, TeX

C_4^2\rtimes_3Q_8
% in TeX

G:=Group("C4^2:3Q8");
// GroupNames label

G:=SmallGroup(128,793);
// by ID

G=gap.SmallGroup(128,793);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,64,422,387,394,2804,1411,718,172,4037]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,d*a*d^-1=a*b=b*a,c*a*c^-1=a^-1*b^2,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Character table of C42:3Q8 in TeX

׿
x
:
Z
F
o
wr
Q
<